Stochastic and deterministic processes drive wetland community assembly across a gradient of environmental filtering


The role of deterministic and stochastic processes in community assembly is a key question in community ecology. We evaluated the effect of an abiotic filter (hydroperiod) on the partitioned diversity of three taxonomic groups (birds, vegetation, macroinvertebrates) from prairie pothole wetlands in Alberta, Canada, which naturally vary in water permanence. We observed that alpha and gamma diversity were higher in permanent than temporary wetlands (16?25% and 34?47% respectively, depending on the taxon). This suggests an influence of deterministic constraints on the number of species a wetland can support. Taxa which cannot persist in shallow, temporary wetlands are excluded by the deterministic constraints that a shortened hydroperiod imposes. In contrast, we observed that beta diversity was significantly higher (2?12%) in temporary wetlands than permanent ones, and temporary wetlands supported more unique combinations of community composition than permanent wetlands, despite having a smaller regional species pool. This observation contradicts prior mesocosm studies that found beta diversity mirrored the pattern in gamma diversity along an environmental filtering gradient. We conclude that deterministic processes are more influential in more stable permanent wetlands, whereas stochastic processes play a more important role in assembly in dynamic temporary wetlands that must disassemble and re-establish annually. Considering three distinct taxonomic groups differing in their relative mobility, our large-scale field study demonstrates that both stochastic and deterministic processes act together to influence the assembly of multiple communities and that the relative importance of the two processes varies consistently along a gradient of environmental filtering.